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Abstract

A major limitation of current advisory systems (e.g., intelligent tutoring systems

and expert systems) is their restricted ability to give explanations. The goal of our

research is to develop and evaluate a flezible explanation facility, one that can dynam-

ically generate responses to questions not anticipated by the system's designers and

that can tailor these responses to individual users. To achieve this flexibility, we are

developing a large knowledge base, a viewpoint construction facility, and a modeling
facility.

In the long term we plan to build and evaluate advisory systems with flexible

explanation facilities for scientists in numerous domains. In the short term, we are

focusing on a single complex domain in biological science, and we are working toward

two important milestones: 1) building and evaluating an advisory system with a flexible

explanation facility for freshman-level students studying biology, and 2) developing
general methods and tools for building similar explanation facilities in other domains.

1Support for this research was provided by the Air Force Office of Scientific Research (contract number
F49620-93-1-0239) and the National Science Foundation (grant number IRI-9120310)
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1 Research Objectives

The goal of our research is to develop and evaluate a flexible explanation facility that can

dynamically generate responses to questions not anticipated by the system's designers and

that can tailor these responses to individual users. Previous advisory systems have lacked

these capabilities for a variety of reasons. In. this section we will describe the problems of

current advisory systems, the solutions to these problems that we propose, and our research

activities for achieving those solutions.

Problems. The explanation facilities of current advisory systems are inflexible for two

reasons:

Inadequate domain knowledge: At least two factors limit the adequacy of the knowl-

edge base as a source of "raw materials" for flexibly generating explanations: small

size and task specificity. Although small size is an obvious limitation, few research

projects have built a large-scale knowledge base as their "starting point" for research

on explanation. Furthermore, because the knowledge for most advisory systems sup-

ports only a single task, most research on explanation has overlooked issues outside

the task requirements, such as answering a range of questions, explaining terminology,

and customizing explanations for specific users [22]. (For notable exceptions see work

by Moore and Swartout [33, 24].)

Inability to reorganize knowledge: Little work has been done to develop methods to

select coherent packets of knowledge from a knowledge base, and even less on the reor-

ganization of portions of the knowledge base to improve specific explanations. These

issues have been avoided by "hazdwiring" knowledge structures that are suitable for the

limited explanations required by a particular advisory system. (For notable exceptions

see work by McKeown [21] and Suthers [32].)

Solutions. V_re are developing a five-part solution to the problems of current advisory

systems. Our solution comprises: (1) constructing a knowledge base which is large-scale

and contains very fine-grained representations, (2) selecting and organizing knowledge with

viewpoints and models, (3) generating new viewpoints on demand, (4) constructing and

simulating models and using them to explain the behavior of mechanisms, and (5) generating

explanations which relate new information to what the user already knows. We discuss each

of these in turn.
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First, we have built an extensive knowledge base for one area of biology m college-level

anatomy and physiology of plants [26]. Although it is under constant development, it is

already one of the largest knowledge bases in existence. (Our knowledge base currently

contains about 3,000 frames and over 28,000 facts.) Unlike knowledge bases built with

instructional frames [14] or hypertext [10], our knowledge base consists of "atomic facts"

that our explanation facility can combine in different ways to produce different explanations.

Second, we are developing methods for selecting information from the knowledge base and

organizing it into a coherent bundle appropriate to the situation at hand. One organizing

structure is that of viewpoints, which provide coherent descriptions of objects or processes.

For instance, the viewpoint "photosynthesis as a production process" selects and organizes

facts to explain how photosynthesis produces glucose from carbon dioxide and water. An-

other organizing structure is that of models, which are built from viewpoints and support

computer simulation. For example, an energy flow model of the plant includes the viewpoints

"photosynthesis as an energy transduction process" and "respiration as an energy transfer

process," and it allows an advisory system to predict and explain the effects of changes in

light wavelength on a plant's photosynthetic or respiratory rate under a variety of specific
circumstances.

Third, we are developing methods to automatically generate new viewpoints. This ability

is important because, as system designers, we cannot anticipate all the viewpoints necessary

for effective explanations. For example, Table 1 lists several viewpoints on photosynthesis

and the situations in which they might arise. Our question answering facility will be able

to construct these viewpoints by selecting and reorganizing the individual facts comprising

existing viewpoints in the knowledge base (see [1]).

Fourth, we are developing methods for automatically constructing and simulating models

and interpreting the consequences of simulations. These methods use existing methods of

qualitative reasoning, but add two new capabilities: constructing models from large knowl-

edge bases and generating explanations from these models. This will allow our explanation

facility to answer "what-if" questions that were unanticipated when the knowledge base was
built (see [28]).

Finally, we are developing methods to automatically generate integrative ezplanations,

which explicitly relate new information to what the user already knows. This is important

to advisory systems because the coherence of an explanation depends upon the particular

situation. Our system will record the discourse with each user and will explain new topics

286



Viewpoint on Photosynthesis

as a destructive process

as an essential process in ecosys-

tem energy'flow

as a magnesium-utilizing process

as an enabling process

Conteztual Situation

To explain the effects of the first oxygen

producing plants on other organisms during

evolution.

To explain how almost all living things de-

pend on photosynthesis for deriving energy

from an abiotic source.

To explain the effects of magnesium defi-

ciency on the plant.

To explain how photosynthesis is impor-

tant for any processes which use glucose or

oxygen.

as a constructive process To explain how photosynthesis is vitally im-

portant to plant growth and reproduction.

Table 1: A few of the viewpoints on photosynthesis and the teaching situations in which

they might be appropriate.
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Figure 1: The layered design of our proposed advisory system. Each layer of software can

access and use any layers within it.

in ways that relate to that user's knowledge and interests (see [18]).

2 The Design of Our Advisory System

An advisory system that simply provides facts to a user fails to take advantage of estab-

lished techniques for ei_ective communication. These techniques include treating the user

as an active learner, grounding new information within a relevant context, and conveying

information in appropriate ways through an interface which is intuitively easy to use. H the

advisory system is to be used in a learning situation, it also needs to motivate the user with
an appealing environment.

To provide these capabilities, our advisory system is designed with layers of software

between the "knowledge base and the user, each providing an essential capability for a flexible,

reactive advisory system (see Figure 1). The outermost layer is the discourse generator, which

interacts with the user by presenting focused information and encouraging the user to ask

questions and to explore additional issues germane to the topic. To generate the relevant

knowledge within an appropriate context and provide alternate modes of presentation, the

discourse generator uses information from the inner layers. The modeler and simulator
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predict and explain the behavior of biological systems by using computational models to

answer ``what if" and "why" questions; they permit the user to directly investigate the

predictions of a model by manipulating its parameters. The viewpoint constructor selects

and organizes domain information into coherent explanations. Many of these viewpoints

may be directly encoded in the knowledge base. Others will be constructed by reorganizing

the facts comprising existing structures.

This section describes the capabilities of each layer of software, and our current proto-

types, beginning with the knowledge base.

2.1 A Knowledge Base for Biology

At the core of any advisory system is a knowledge base. It contains both the information to

be communicated to the user and the information required for effective comunication, such

as the background knowledge required to understand particular concepts.

For many domains, building a knowledge base is difficult and time consuming. To avoid

this difficulty, most system designers have built advisory systems in subject areas for which

a small knowledge base will suffice [35, 34, 4, 7, 6, 29, 16, 27, 25]. These subjects fall into two

categories. The first is task-specific subjects that focus on a single application of knowledge.

For example, the Guidon system [9] teaches diagnosis of infectious blood diseases. Teaching

other tasks, such as how to determine a patient's prognosis, would require substantial changes

to the system because Guidon is specialized for its single task. The second category of

subjects is formally characterizable subjects that require only a small set of logical rules or

axioms. For example, the GEOMETRY system [2] requires only a few rules of introductory

geometry. However, the fundamental knowledge in a field like biology is neither committed

to performing a single task nor formally characterizable with a small set of axioms. We

believe that we con overcome the inherent difficulty in building a large knowledge base for

two reasons: 1) we have developed sophisticated software that assists us in viewing and

editing large, fine-grained knowledge bases; 2) we have used this software to build a large

knowledge base, and applied our prototype systems for explanation generation to it.

2.2 The Viewpoint Constructor

A knowledge base for basic science must represent multiple viewpoints of each concept. For

example, encoded in the Biology Knowledge Base are many different viewpoints of photo-
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synthesis. Two of these, which we mentioned earlier, are "photosynthesis as a production

process" and "photosynthesis as an energy transduction process." The knowledge base also

contains more focused viewpoints that are appropriate in certain situations, such as "pho-

tosynthesis as a glucose production process" and "photosynthesis as an ozygen production
process."

Figure 2 suggests why viewpoints are useful and even essential. The figure shows just

part of the knowledge about photosynthesis that is encoded in our Biology Knowledge Base.

Taken altogether, the totality of knowledge about photosynthesis is incoherent -- there are so

many facts about photosynthesis that some focus is necessary. Viewpoints provide this focus.

The figure shows the two viewpoints of "photosynthesis as production" and "photosynthesis

as energy transduction," highlighted with solid and dashed bold lines, respectively. Each

collects and organizes facts about the basic process of photosynthesis that are relevant to that

particular point of view and omits the large number of other facts that are irrelevant from

that point of ",dew. For example, "photosynthesis as production" focuses on the compounds,

oxygen and glucose, that are produced by photosynthesis and on the compounds, carbon

dioxide and water, that are its raw materials, and omits intermediate compounds, such as

ATP that participate in photosynthesis but are, overall, neither produced nor consumed.

This viewpoint also omits much other information about photosynthesis that is irrelevant to

viewing photosynthesis as production.

A viewpoint, then, is a collection of facts about a particular concept that are all relevant

within a particular context. The focus that viewpoints provide is critical because an arbitrary

collection of facts is usually incoherent, even when the facts all pertain to the same topic.

For example, describing photosynthesis as "a process that converts light energy into glucose

and oxy. gen" is not patently incorrect but is confused or incoherent in that it intermixes facts

from the viewpoints of energy flow and material flow. It is better to say that photosynthesis

converts light energy into chemical bond energy (the energy transduction viewpoint), or that

it converts carbon dioxide and water into glucose and oxygen (the production viewpoint).

The viewpoint constructor is the part of our system that processes requests for viewpoints

and produces the appropriate collection of facts selected from all facts in the knowledge base.

Many researchers acknowledge that viewpoints are a useful way of organizing knowledge.

However, most methods for retrieving viewpoints from a knowledge base assume that each

viewpoint is explicitly encoded [33, 23, 20]. Unfortunately, the difficulty of explicitly encoding

viewpoints increases combinatorially with the number of concepts in the knowledge base. In
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Figure 2: A small portion of the knowledge about photosynthesis represented in the

Biology Knowledge Base. These labelled graphs, or "semantic networks", are widely

used in artificial intelligence. Each f_:t is a relation (depicted as a labeled arc or

line) between two concepts (depicted as labeled boxes). Solid bold lines represent

information that is part of the viewpoint "photosynthesis as production", while the

dotted bold lines represent the viewpoint of" "photosynthesis as energy transduction'.
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addition, relying on pre-encoded viewpoints is inflexible because new viewpoints cannot be
created as needed.

Our solution to this problem is to enable the advisory system to dynamically generate

viewpoints when they are needed. We have experimented with methods for doing this using

abstract specifications for points of view, called view types. For example, the structural

view type specifies methods for constructing viewpoints concerning an object's parts and

their interconnections, such as the viewpoint "endosperm as part of a seed." Similarly, the

functional view type specifies methods for constructing viewpoints concerning the role of an

object in a process, such as "chloroplast as the producer in photosynthesis."

View types can also be combined. The structural-functional view type specifies how the

individual parts of an object participate in the subevents of some process. For example, a

structural-functional description of angiosperm sexual reproduction would discuss how each

part of the flower (sepals, petals, stamen, and carpels) participates in some event of the

reproductive process (e.g., pollinator attraction, pollen formation, and pollination).

We believe that a relatively small number of such view types is sufficient to characterize

and produce many viewpoints within the natural sciences. Support for this conjecture is

preliminary but encouraging. First, we found that our view types and their combinations

are sufficient to characterize over fifty definitions chosen at random from the glossary of

a biology textbook. Second, we have successfully used view types in a prototype system

for generating viewpoints [1, 30]. These viewpoints constitute answers to a wide range of

definational questions (e.g., "What is C3-photosynthesis?") and comparative questions (e.g.,

"What is the difference between mitosis and meiosis?").

2.3 The Modeler and Simulator

Our advisory system will use computational models to predict and explain the behavior of

complex biological systems. This capability is very important because it can tie together

otherwise disparate and uninteresting facts into an explanation of how something works.

Most computational models in biology are quantitative models, which interrelate a sys-

tem's parameters using differential equations. Although these models are precise, they can

also be intractable, especially if some of the equations are nonlinear. Moreover, because

quantitative models require complete numeric data, model builders must assume precise val-

ues for parameters for which little precise data may be known. Finally, the quantitative

details often obscure the more important qualitative principles.
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During the past ten years, research on qualitative models has addressed these problems

[15, 13, 11]. Instead of using exact relationships and values, qualitative models employ

qualitative relationships, such as "water potential increases with turgor," and qualitative

values, such as "cell turgor is positive and decreasing." Approximations like these are fre-

quently sufficient to express essential information about a system when complete knowledge

is unavailable or unneccessary. They also enable a qualitative simulator to characterize the

behavior of a system, much as a human reasoner could, without knowing or needing exact

relationships or values. For example, a qualitative simulator with a model of a plant's water

flow could predict that "excessive transpiration from a plant caused by increasing tempera-

tures will be countered by closing of the stomata" without knowing the original concentration

of water in the plant or the exact rate of transpiration. Qualitative models have been used

in advisory systems for steam-plant operation [31], weather prediction [5], circuit diagnosis

[3, 35], and many other domains.

We are extending the research on qualitative reasoning in two ways. First, while previous

research assumes that a model is given a priori, we are developing methods for constructing

models as needed. In order to support a wide range of questions, our knowledge base must

provide a vast array of viewpoints and levels of detail. However, overly detailed models,

while perhaps capable of answering many questions, can be inefticient or even intractable,

and excess detail would make their predictions opaque. Our program uses each question

to decide which perspectives and abstractions are needed, constructs a model from these

pieces, and simulates this model to answer the question (see [28]). Such a model not only

answers the question, but also highlights the knowledge supporting the answer and provides

transparent, explainable answers.

Second, we are developing methods to generate in-depth explanations of qualitative rea-

soning. A major shortcoming of current simulators (both qualitative and quantitative) is

that they generate extensive details about a model's behaviors but little overview or expla-

nation. Our system will provide concise and focused textual answers to a range of questions

about a model and its behaviors. For example, we expect to provide multilevel overviews of

both a model and its behaviors which highlight their most important features and compare

and contrast different behaviors (if there is more than one). We also expect to provide an

explanation of the mechanisms by which a model causes its behaviors, grounded in familiar

physical principles, and how a model would respond to changed circumstances (see [19]).
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2.4 The Explanation Generator

Our overriding goal is to develop and evaluate a flexible explanation facility that can dynam-

ically generate responses to questions not anticipated by the system's designers and that can

tailor these responses to individual users. We are building an explanation generator that will

achieve flexibility in three ways. First, it will produce integrative explanations that relate

new information to the user's existing knowledge. In producing an integrative explanation,

we can define three networks of relevant concepts and relations. The target network is the set

of concepts and relations that a system seeks to communicate to the user. The base network

is the set of concepts and relations that model what the user already understands and is

relevant in some way to the target. The linking network is the set of concepts and relations

that relate the target to the base. To produce an integrative explanation, our system will

determine the relevant target, linking, and base networks, and it will organize the knowledge

in the linking and target networks in a manner that facilitates their integration into the base
network.

Opportunism is the second way that our explanation generator will achieve flexibility. The

system will actively seek opportunities to include important information in the domain that is

closely related to the topic being explained but is unknown to the user. For example, suppose

the system were explaining embryo sac formation to a user, and noticed that two participants

in this process, a megaspore and a megaspore mother cell, are both kinds of botanical cells.

It can recognize this as an opportunity to discuss the difference between haploid and diploid

cells, an important distinction in biology. Moreover, rather than interjecting this discussion

in the middle of another topic, the system can relocate it to an appropriate place in its
explanation.

Finally, our explanation generator will achieve organizational flexibility. Such flexibility

is desirable for two reasons. First, a generator should be able to introduce prerequisite

material and elaborations at appropriate positions in the explantion. Second, it should be

able to place material that is familiar to the user earlier in the explanation and material

that is new to the user later. To achieve organizational flexibility, the generator takes a

delayed-commitment approach: it delays organizational commitments as long as possible.

Initially, the propositions of the explanation are organized very loosely. As the explanation

develops, the generator adds new propositions and gradually arranges them in an order that
is most suitable for the user.

We are aided in our efforts to construct an explanation generator by previous research
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resultson user modeling and natural language generation. An overlay model [8] represents

what the user knows as a subset of the concepts in the knowledge base. The explanation

generator initializes the user model with basic concepts covered in previous courses and

lessons, and updates the model based upon explanations that it generates and questions the

user asks. Also, we are using the FUF system [12] for converting explanation structures into

English. FUF, which has been in development at Columbia for the past seven years, employs

one of the largest machine grammars ever constructed and provides wide linguistic coverage.

We have constructed a prototype system, which provides integrative explanations, op-

portunism, and organization flexibility [17, 18]. We have used this system to produce multi-

paragraph explanations from portions of the Biology Knowledge Base. Because the system

is not restricted to schemas, it generates different explanations for different users. The sys-

tem's output was favorably evaluated by a domain expert, who found the explanations both

accurate and clear.

3 Evaluating and Generalizing Our Results

Our long-term objective is to build advisory systems for complex domains that compete well

with human advisors. Although we cannot meet this objective soon, we believe we can build

and evaluate the core components of an advisory system that competes well with textbooks

for an important portion of a course, and that meeting this short-term objective is a critical

milestone for achieving our long-term objective.

We plan to evaluate our advisory system by using it to help teach an introductory biology

course at the University of Texas at Austin. In addition to introductory material, the

system wiU explain advanced material that has not been covered in the classroom or assigned

readings.

The evaluation will be based on data from the following experiment. Users will be

paid to spend extra time in the course studying the advanced material with the help of

the advisory system. When the users are comfortable using the system, we will give them

several assignments. Each assignment will require answers and explanations for a range

of technical questions on both the introductory and advanced material. (These questions

will be formulated by a biologist who is not affiliated with our project. Our research team

will not know the questions beforehand.) To complete their assignments, the users will be

randomly assigned to three groups. Users in the "traditional" group will be permitted to
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use any standard (non-human) resources, such as textbooks and laboratory equipment. The

"advisory" group will be allowed to use only the advisory system, and the "eclectic" group

will be allowed to use both traditional sources and the system.

We will compare the performance of the three groups of users on correctness and complete-

ness of answers and on efficiency of task completion. The users' answers and explanations

will be judged by the teaching staff for the biology course, who will not be apprised of the

users' identity or group. If a benefit for the advisory system is found, we will separately an-

alyze user performance on the introductory material to see if a benefit exists even when the

material has been covered in the classroom. Including the eclectic group will further allow

us to ascertain whether there is a synergistic effect among the three sources of information

classroom, textbook, and advisory system. The users' proficiency in terms of the amount

of time used to complete the assignment will be measured, controlling for the correctness of

the users' responses. For each of the three groups, we will also measure the users' interest in

the advanced materials taught. This assessment will be based on questions from standard
course evaluations.

Based on the results of our evaluation, we will generalize our research results to help others

build advisory systems in a range of domains. This will involve removing dependencies on

the domain of biology that our experience will no doubt reveal and re-implementing those

parts of our system that contributed most to its success, to improve its portability and ease
of reuse.

4 Summary

The primary results of this research will be the following: (1) an explanation facility for

college-level biology, (2) a critical evaluation of the explanation facility based upon its use

in an introductory biology course at the University of Texas, and (3) general methods and

tools for building similar explanation facilities in other domains.

During the last six years, we have built a very large knowledge base for one area of biology

and we have developed prototype systems for each component of our proposed explanation

facility. From this experience, we have learned how to structure large knowledge bases

using viewpoints and models, and we have created a foundation on which to build a flexible
explanation facility.

Our proposed explanation facility will dynamically generate responses to unanticipated

296



questions and tailor these responses to individual users. This flexibility will encourage a user

to ask questions and request clarification or detail. In the future we expect this functionality

to be the foundation for a wide range of computer-based advisory and research tools, such

as intelligent databases, electronic libraries, and simulated laboratories.
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